Multiple roles for u-turn/ventral veinless in the development of Drosophila PNS.

نویسندگان

  • Adi Inbal
  • Daniel Levanon
  • Adi Salzberg
چکیده

Most of the cells in the embryonic peripheral nervous system (PNS) of Drosophila are born in their final location. One known exception is the group of lateral chordotonal organs (lch5) whose precursors form in a dorsal position, yet the mature organs are located in the lateral PNS cluster. Mutations in the u-turn (ut) locus perturb the localization of lch5 neurons and result in a 'dorsal chordotonals' phenotype. We show that ut is allelic to ventral veinless (vvl), also known as drifter. VVL, a POU-domain transcription factor, has been shown to participate in the development of tracheae and CNS in the embryo, and in wing development in the adult; however, its role in PNS development has not been described. Characterization of the 'dorsal chordotonals' phenotype of vvl mutant embryos revealed that in the absence of VVL, cell fates within the lch5 lineage are determined properly and the entire organ is misplaced. Based on the positions of lch5 cells relative to each other in mutant embryos, and in normal embryos at different developmental stages, we propose a two-step model for lch5 localization. lch5 organs must first rotate to assume a correct polarity and are then stretched ventrally to their final position. In this process, VVL function is required in the ectoderm and possibly in the lch5 organs too. VVL is also expressed in developing external sensory organs in the embryo and in the adult. In the embryo, loss of VVL function results in increased apoptosis in specific es organs. Analysis of vvl mutant clones in adults revealed a requirement for VVL in the control of cell number within the bristle lineage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ventral veinless, the gene encoding the Cf1a transcription factor, links positional information and cell differentiation during embryonic and imaginal development in Drosophila melanogaster.

The ventral veinless gene (vvl) encodes the previously identified Cf1a protein, a transcription factor containing a POU-domain. During embryonic development vvl function is required for the formation of the tracheal tree and in the patterning of the ventral ectoderm. During imaginal development vvl is required for cell proliferation and the differentiation of the wing veins. vvl expression is r...

متن کامل

Clonal analysis of Drosophila antennal lobe neurons: diverse neuronal architectures in the lateral neuroblast lineage.

The antennal lobe (AL) is the primary structure in the Drosophila brain that relays odor information from the antennae to higher brain centers. The characterization of uniglomerular projection neurons (PNs) and some local interneurons has facilitated our understanding of olfaction; however, many other AL neurons remain unidentified. Because neuron types are mostly specified by lineage and tempo...

متن کامل

Morphogenetic Studies of the Drosophila DA1 Ventral Olfactory Projection Neuron

In the Drosophila olfactory system, odorant information is sensed by olfactory sensory neurons and relayed from the primary olfactory center, the antennal lobe (AL), to higher olfactory centers via olfactory projection neurons (PNs). A major portion of the AL is constituted with dendrites of four groups of PNs, anterodorsal PNs (adPNs), lateral PNs (lPNs), lateroventral PNs (lvPNs) and ventral ...

متن کامل

ventral veinless, a POU domain transcription factor, regulates different transduction pathways required for tracheal branching in Drosophila.

Cell migration is an important step in a variety of developmental processes in many multicellular organisms. A particularly appropriate model to address the study of cell migration is the tracheal system of Drosophila, whose formation occurs by migration and fusion from clusters of ectodermal cells specified in each side of ten embryonic segments. Morphogenesis of the tracheal tree requires the...

متن کامل

A Population of Projection Neurons that Inhibits the Lateral Horn but Excites the Antennal Lobe through Chemical Synapses in Drosophila

In the insect olfactory system, odor information is transferred from the antennal lobe (AL) to higher brain areas by projection neurons (PNs) in multiple AL tracts (ALTs). In several species, one of the ALTs, the mediolateral ALT (mlALT), contains some GABAergic PNs; in the Drosophila brain, the great majority of ventral PNs (vPNs) are GABAergic and project through this tract to the lateral hor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 130 11  شماره 

صفحات  -

تاریخ انتشار 2003